Bayesian Analysis of Immune Response Dynamics with Sparse Time Series Data

نویسندگان

  • Fernando V. Bonassi
  • Cliburn Chan
  • Mike West
چکیده

In vaccine development, the temporal profiles of relative abundance of subtypes of immune cells (T-cells) is key to understanding vaccine efficacy. Complex and expensive experimental studies generate very sparse time series data on this immune response. Fitting multi-parameter dynamic models of the immune response dynamics– central to evaluating mechanisms underlying vaccine efficacy– is challenged by data sparsity. The research reported here addresses this challenge. For HIV/SIV vaccine studies in macaques, we: (a) introduce novel dynamic models of progression of cellular populations over time with relevant, time-delayed components reflecting the vaccine response; (b) define an effective Bayesian model fitting strategy that couples Markov chain Monte Carlo (MCMC) with Approximate Bayesian Computation (ABC)– building on the complementary strengths of the two approaches, neither of which is effective alone; (c) explore questions of information content in the sparse time series for each of the model parameters, linking into experimental design and model simplification for future experiments; and (d) develop, apply and compare the analysis with samples from a recent HIV/SIV experiment, with novel insights and conclusions about the progressive response to the vaccine, and how this varies across subjects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد آنالیز طیفی بیزی در تحلیل سری‌های زمانی نورسنجی

The present paper introduces the Bayesian spectral analysis as a powerful and efficient method for spectral analysis of photometric time series. For this purpose, Bayesian spectral analysis has programmed in Matlab software for XZ Dra photometric time series which is non-uniform with large gaps and the power spectrum of this analysis has compared with the power spectrum which obtained from the ...

متن کامل

Comparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome

Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data.   Methods: This study use...

متن کامل

A Sparse Representation Method to Detect Saffron Agricultural Lands Using Sentinel-II Satellite Images Time

Nowadays, agricultural management via remote sensing technology has gained a special position among managers and the people who are in charge of this industry. Saffron (Red Gold) is one of specific Iran’s agricultural products with a high economic valance which is used in different fields of food and medical industries. Considering the cultivation conditions of the saffron, there has not a pers...

متن کامل

Bayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data

This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...

متن کامل

The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data

The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014